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Relationships between Free Cadmium Ion
Activity in Seawater, Cadmium
Accumulation and Subcellular Distribution,
and Growth in Polychaetes
by Kenneth D. Jenkins*t and Brenda M. Sanders**

We have examined the relationships between Cd ion activity {Cd2"}, in seawater, Cd accumulation and
subcellular distribution and growth in the polychaete Neanthes arenaceodentata. Organisms were exposed
for 3 weeks to a range of {Cd2+} in a Cd-chelate buffer system. Cadmium accumulation and growth were
monitored weekly for each exposure group and subcellular Cd distributions were determined at the end of
the 3-week period. We found Cd associated with all of the subcellular fractions except the very low molecular
weight ligands. Total Cd accumulation was greatest at day 7 and decreased over time in all but the highest
{Cd2+} where it remained constant. For each point in time, however, there was a linear relationship between
total Cd and {Cd2"} in seawater. Linear relationships were also observed between {Cd2+} and Cd loading in
each subcellular ligand pool. Specific growth rates varied with both {Cd2"} and time in a nonlinear manner.

Introduction
The bioavailability and toxicity of trace metals such as

Cd, Cu, and Zn are related to the activity of the free
metal ion rather than the total metal concentration (1-
5). For Cd it is the CdC12 complex that predominates in
seawater (3). Therefore, salinity is the overriding factor
which can alter free Cd ion activity {Cd2+}, and hence,
bioavailability and toxicity in marine systems. Yet the
relationships between {Cd2+} in seawater and Cd bioac-
cumulation, metabolism, and toxicity are not well under-
stood. We do know that the major mechanism underlying
these relationships involves interactions between Cd and
both membrane-bound and soluble ligands (6).

In this study we have examined the relationships be-
tween {Cd2"} in sea water, Cd bioaccumulation and sub-
cellular distribution, and growth in a polychaetous an-
nelid. These organisms were exposed to a range of several
orders ofmagnitude of {Cd2+}. Cadmium ion activity was
maintained with a Cd-chelate buffer system which in-
cluded "09Cd as a tracer. Organisms were exposed for 3
weeks, and both Cd accumulation and growth were de-
termined weekly.
There was a linear relationship between {Cd2 } and

Cd accumulation at each point in time. Surprisingly, Cd
accumulation was greatest after 1 week and declined over
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the second and third weeks for all but the highest {Cd2+}
where it remained constant. Further, physiological
stress, as evidenced by hormesis and growth inhibition,
was observed within the range of {Cd2"} used in this
experiment.
At the end of the 3-week period, the subcellular dis-

tribution of Cd was determined for organisms from each
exposure regime. We found Cd associated with all sub-
cellular fractions and the cytosol. Cytosolic Cd was as-
sociated with high molecular weight (HMW) and metal-
lothionein (MT) ligand pools but not the very low
molecular weight (VLMW) ligands. As we observed for
total Cd accumulation, cadmium in the subcellular frac-
tions and cytosolic pools was also linear relative to
{Cd2+}. Throughout the entire range of exposures there
were no shifts in Cd accumulation or its relative distri-
bution among the subcellular fractions.

Materials and Methods
Polychaetous annelids (Neanthes arenaceodentata)

were obtained from a laboratory population which has
been under continuous culture since 1964 (7). These or-
ganisms were randomly divided into six groups, each of
which was exposed to a different free cadmium ion ac-
tivity {Cd2'}. As a control, a seventh group was included
which was exposed to the same buffer system with no
added Cd. There were five sets of 10 organisms each
within each group. Individual organisms were main-
tained in separate acid-cleaned plastic petri dishes.

Metal-chelate buffer systems made up in Millipore-fil-
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tered (0.45 ,um) seawater (350/oo) were used to control
{Cd2"} as well as the activities of Cu, Zn, Mn, Co, Fe
and Mo (3). Each of the buffer solutions contained 10-
M EDTA, 4 x 10-5 M NaOH, 5.2 x 10-7 M Cu, 1.33
x 10-6MZn,9.0 x 10V8MMn,6.8 x 10-8MCo,10-7
M Fe, and 3 x 10-8 M Mo. The calculated metal ion
activities for these metals were {Cu2"} = 1012 M
{Zn2+} = 10-9.3 M, {Mn2+} = 10-8 M, {Co2+} = 10-
M. The amount of Cd added to the buffers ranged from
4.5 x 10-9 M to 4.5 x 10-( M to achieve {Cd2} which
ranged from 10-12 M to 10-8 M. To facilitate measure-
ment of Cd uptake and subcellular distribution, the buff-
ers were spiked with radiolabeled 109Cd (0.01 RCi/mL).
The addition of trace concentrations of 1'Cd did not sig-
nificantly alter the total Cd concentration or the {Cd2+}.
Organisms were removed at weekly intervals, blotted

to remove excess water, weighed, and counted for 109Cd
activity They were then placed in clean culture dishes
containing fresh metal buffered seawater at the appro-
priate {Cd2+}. After 3 weeks of exposure the organisms
were weighed and frozen at -80'C until subsequent
analysis.

All organisms from each exposure regime were pooled
to determine subcellular Cd distributions. Each sample
was suspended in homogenization buffer (0.05 M Tris-
HCI, pH 7.4), and homogenized with a glass homogenizer
and Teflon pestle. The homogenate was then fractionated
by differential centrifugation (8). The cellular debris
(200g pellet), nuclear-mitochondrial fraction (10,000g pel-
let), microsomal fraction (100,000g pellet) and cytosol
(100,000g supernatant) were collected and their 109Cd
activity determined. The cytosol was brought to uni-
formity with a vortex mixer, divided into 1 mL aliquots,
and stored at -80°C for subsequent fractionation by high
performance liquid chromatography (HPLC). Individual
aliquots of the cytosol were rapidly thawed, passed
through a 0.2 ,um nylon ifiter, and 800 ILL was immedi-
ately fractionated on an HPLC steric exclusion column
(SEC) (4); 1-mL fractions were collected, and 109Cd ac-
tivities were determined on a Beckman 4000 gamma
counter which has a counting efficiency of25%. Cadmium
concentrations were calculated from the specific activi-
ties of each metal buffer system and assume no isotope
effect.
Data on Cd accumulation, subcellular distribution and

growth were analyzed by correlation analysis, linear
regression analysis, and analysis of variance (9). Our
confidence limits were set at 0.05.

Results
The total accumulation of1'Cd was determined weekly

over the 3-week exposure period by measuring the 1'Cd
activity in intact worms. After 7 days, there was a direct
relationship between Cd accumulation and {Cd2+} in sea-
water (r2 = 0.993, slope = 1.004; Fig. 1). Similar re-
lationships between Cd accumulation and {Cd2+} in sea-
water were also observed following exposures of 14 days
(r2 = 0.990; slope = 1.028; Fig. 1) and 21 days (r2 =
0.985; slope = 1.086; Fig. 1). Cadmium accumulation

10*i l-

I o a .

102:
E

lo,
101.
*100-

0

101

I10-8

II

Y ./

*

o/ *1
/0/

/

12 11 10 9 a

pCd
FIGURE 1. Total cadmium per wet weight of tissue in N. arenaceo-

dentata exposed to a range of {Cd2 } (pCD = - log of {Cd2"}) for
(A) 7, (0) 14, and (0) 21 days. Model curves were fitted by standard
linear regression.

decreased significantly from day 7 through day 21 (F =
17.2, 27.3, 37.9, 51.2, 110.1, with d.f. = 2,14 for 10-12M
to 10-9M, respectively) at all but the highest {Cd2+} of
10- M where it did not change with time.
After 3 weeks of exposure, 1'Cd was present in all

polychaetes exposed to Cd and was associated with the
cellular debris, the nuclear-mitochondrial and microsomal
fractions, and the cytosol (Fig. 2). The cytosol usually
contained the highest Cd concentrations and was followed
in order by the cellular debris, the nuclear-mitochondrial
fraction, and the microsomal fraction. As with the ac-
cumulation of total Cd, cadmium accumulated linearly in
these fractions with increased {Cd2 } (r2 = 0.96, 0.988,
0.992, 0.974; slope = 1.02, 1.06, 1.11, 1.05; for cytosol,
debris, nuclear-mitochondrial fraction, and microsomal
fraction, respectively).
Within the cytosol, 1"Cd accumulated in two ligand

pools (Fig. 3). It was most prominent in the metallothi-
onein-like ligand pool (MT; 8-10 kD) and was also as-
sociated with the high molecular weight pool (HMW; >
20 kD). The very low molecular weight livands (VLMW;
< 5 kD) did not accumulate significant 19Cd activity in
the course of this experiment. The cadmium associated
with both MT and HMW ligands also increased linearly
with increased {Cd2+} in seawater (Fig. 4; r2 = 0.954,
0.976; slope = 1.01, 1.2; for MT and HMW, respectively).
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FIGURE 2. Subcellular distributions of Cd in polychaetes from Fig.

1. Accumulation is shown in (c) the cytosol, (A) nuclear-mitochon-
drial fraction, (0) microsomal fraction, and ( 0 ) cellular debris after
21 days. Model curves for Cd accumulation in each fraction were
fitted by standard linear regression.
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FIGURE 4. Cadmium in polychaetes from Fig. 1 (0) in the MT pool
and (@) in the HMW pool after 21 days of exposure. Model curves
for each pool were fitted by standard linear regression.

The relationship between {Cd2+} and growth was non-
linear and time-dependent (Fig. 5). The specific growth
R defined as the change in weight divided by weight at
day 0, did not differ significantly between exposure re-
gimes on days 7 and 14. On day 21, however, R increased
with increased ACd2'} in seawater up to 10- M, and was
reduced at 10- M (F = 4.1; d.f. = 6,34).
Over the course of this experiment, specific growth did

not change significantly for organisms exposed to buffer
without added Cd and to the lowest {Cd2+} (10-12 M).
For those organisms exposed to all other activities, how-
ever, wet weight changed with time; it increased with
time at exposures of 10 11, 10-15, 10-9 (F = 9 6 18.6
24.2 for d.f. = 2,14). At 10-1o and 10-8 M of {Cd+}, R
increased at day 14 and decreased at day 21 (F = 19.3;
6.9; for d.f. = 2,14).

Discussion

FIGURE 3. Cytosolic distribution 10Cd expressed as counts per min-
ute (CPM) in polychaetes exposed to 10 1- M {Cd2+} for 21 days.
HMW, MT, and VLMW represent high molecular weight, metal-
lothionein, and very low molecular weight pools, respectively. The
bars represent fractions which were combined for each pool.

Cadmium Accumulation
In this study, there was a direct, one-to-one relation-

ship between Cd accumulation and exposures to {Cd2+}
of over four orders of magnitude. A similar relationship
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FIGURE 5. Specific growth R for polychaetes from Fig. 1 for days 7, 14, and 21. Specific growth is equal to the change in wet weight from day
0 divided by the wet weight at day 0 (C = control organisms exposed to the buffer system with no added Cd).

is observed in juvenile and adult oysters (10). Relation-
ships between free metal ion activity and bioaccumula-
tion are found for Cu, Zn, and Mn in other organisms
(1,11-14). Depending upon the metal and the organisms,
both linear and sigmoidal relationships have been de-
scribed.
Cross and Sunda (15) used thermodynamic consider-

ations to explain the dependence of the bioaccumulation
of these metals on their free ion activity: The free metal
ion activity is a measure of the free energy of the metal
and, as such, reflects the potential for interactions be-
tween the metal and available ligands. Many metals, in-
cluding Cd (16), require a protein to mediate transport
across cell membranes. Metal uptake then will depend
upon the interactions between the metal and the trans-
port proteins and the free metal ion activity reflects the
potential for these interactions.
We observed no increase in total Cd accumulation be-

tween day 7 and 21, even though the polychaetes were
continuously exposed. In fact, except for the highest ex-
posure regime, where Cd accumulation did not change
with time, total Cd in the polychaetes decreased from
day 7 to 21. These observations indicate that although at
any point in time total accumulation is dependent upon
{Cd2+}, over a time span of several weeks this species
has some capacity to regulate rates of Cd uptake and
excretion to reduce Cd accumulation.

Subcellular Distribution
Within the cell much ofthe Cd was found in the cytosol,

where it ranged from 30 to 66% of the total tissue burden
of Cd (Fig. 2). Cadmium accumulates in the cytosol of
mammals, lower vertebrates and invertebrates where it
is usually associated with the low molecular weight
metal-binding protein metallothionein (17). In this ex-
periment most of the cytosolic Cd (77 to 100%) was as-
sociated with a metal-binding pool that has character-
istics similar to metallothioneins (Figs. 3 and 4) (17). This

pool: had an apparent molecular weight of 9,000 daltons;
comigrated with fish and mouse metallothioneins on
SEC-HPLC; increased with Cd exposure; also bound Cu
and Zn; was resolved as two to three isoforms on DEAE-
Sephadex; and had a high 250/280 nm ratio (unpublished
data). Cadmium-binding proteins with similar charac-
teristics have been isolated from an oligochaetous annelid
(18). In addition, a low molecular weight Cu-binding pro-
tein has been found in the polychaete Eudistylia van-
couveri (19).
We found cytosolic Cd was also associated with het-

erogeneous high molecular weight ligands (HMW; Fig.
4). A number of marine invertebrates accumulate Cd in
this pool (20,21). This accumulation is thought to be a
consequence of nonspecific binding of Cd to soluble ma-
cromolecules and may represent an important mechanism
of metal toxicity.
The Cd in the nuclear-mitochondrial fraction may be

enclosed within membrane-bound vesicles such as the Cd
containing granules found in the mitochondrial-lysosomal
pellets of mussels and other marine invertebrates (22,23).
These vesicles are thought to be tertiary lysosomes and
could function in metal homeostasis and detoxication (24).
Cadmium also accumulates in the nuclear fraction ofmus-
sel and mammalian cells where it may cause DNA lesions
(25,26). Since the procedures used in this study do not
allow us to distinguish between the nuclear, mitochon-
drial, and lysosomal fractions the specific distribution of
Cd between these organelles and their possible involve-
ment in Cd metabolism is not clear. Because of the prom-
inence of Cd in these fractions, we are currently carrying
out a more extensive examination of their role in Cd
metabolism.

In previous studies we examined the relationships be-
tween {Cd2"} in seawater and cytosolic Cu accumulation
and distribution in crab larvae (4,27). In those studies,
cytosolic Cu was independent of {Cu2'} at lower expo-
sures and increased significantly at {Cu '} beyond those
measured in the estuary where the crabs had been col-

r

208



CADMIUM DISTRIBUTION IN POLYCHAETES 209

lected. This increased Cu accumulation at higher Cu ex-
posures reflected increases in Cu associated with both
MT and VLMW ligands. Copper associated with HMW
ligands, however, remained constant over the entire range
of {Cu2+}. From these data we concluded that crab larvae
could regulate both the accumulation of Cu and the dis-
tribution of Cu within the cell. This control over Cu up-
take, efflux, and metabolism would allow the larvae to
maintain some independence from external {Cu2+}.

Since total Cd accumulation and accumulation in each
of the subcellular fractions can be described as linear
functions of {Cd2+} in seawater, these polychaetes dem-
onstrated no independence from {Cd2+} in their environ-
ment. Differences in Cd concentrations among the sub-
cellular fractions can be explained solely by differences
in the number and affinity of Cd-binding sites within
each fraction. Also, there was no redistribution of Cd
between the subcellular ligand pools, even at {Cd2+} in-
dicative of stressful conditions. We conclude that this
species cannot regulate Cd distribution between subcel-
lular fractions under these experimental conditions. Re-
distribution within the fractions, of course, cannot be
precluded from these data. We do not know if this qual-
itative difference between larval crabs and polychaetes
in their ability to regulate subcellular metal distribution
is the result of differences between the metabolisms of
essential and nonessential metals or is species specific.
Experiments are underway to clarify this issue.

Growth
We monitored growth over the course of this experi-

ment in order to understand the ecological significance
of Cd accumulation and subcellular distribution. The ma-
jor differences in specific growth occurred at day 21
where R increased in worms exposed from 10-12 to 10-9
M {Cd2"} and then dropped off significantly at 108 M
(Fig. 5). Reductions in growth are indicative of stress
and occur in marine organisms exposed to high concen-
trations of Cd and other toxicants (27-30). At lower con-
centrations of these toxicants, growth increases (29-31).
These responses of growth enhancement at low toxicant
concentrations and inhibition at higher concentrations are
similar regardless of the physical or chemical character-
istics of the toxicant (30). The apparent enhancement of
a physiological process by low concentrations of a con-
taminant is termed hormesis. It is considered an integral
component of the etiology of stress (31) and has been
attributed to transient overcorrections of internal regu-
latory mechanisms in response to inhibitory challenges
(28). The presence of a hormetic response followed by
growth inhibition indicates that after three weeks of ex-
posure to {Cd2+} greater than 10-15 M, these organisms
were experiencing physiological stress.

In summary, these data reveal a linear relationship
between Cd accumulation in this polychaete species and
{Cd2+} in seawater, indicating that Cd accumulation is
simply a function of bioavailability. The relative distri-
bution of Cd between the subcellular fractions was con-
stant at all {Cd2 } and Cd accumulation within each frac-

tion could also be related in a linear manner to external
{Cd2"}. No shifts in the rate of Cd accumulation within
each fraction or relative Cd distribution between the frac-
tions were observed, even in the higher {Cd2+} where the
growth data suggest that these organisms were
stressed. However, since the rate of accumulation de-
creases at all but the highest {Cd2+} from day 7 to 21,
this species appears to have some capacity to adjust their
Cd uptake and efflux to reduce total accumulation over
a time span of several weeks.
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